

ALLIANCE

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B Statistics 1B

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

			mm m
	Ν	/IS/SS1B - AQA GCI	E Mark Scheme 2008 January
Key to mark	scheme and abbreviations used in marking		SCIOUT.C
М	mark is for method		no
m or dM	mark is dependent on one or more M marks a	and is for metho	d
А	mark is dependent on M or m marks and is for	or accuracy	
В	mark is independent of M or m marks and is	for method and	accuracy
Е	mark is for explanation		
$\sqrt{10}$ or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
–x EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

1sths

MS/SS1B				- Un
Q	Solution	Marks	Total	Comments
1(a)(i)	$P(X < 3.5) = P\left(Z < \frac{3.5 - 3.3}{0.16}\right) =$	M1		Standardising (3.45, 3.5 or 3.55) with 3.3 & $(\sqrt{0.16}, 0.16 \text{ or } 0.16^2)$ and/or $(3.3 - x)$
	P(Z < 1.25) =	A1		CAO; ignore sign
	0.894 to 0.895	A1	3	AWFW (0.89435)
(ii)	$P(X > 3.0) = P\left(Z > \frac{3.0 - 3.3}{0.16}\right) =$	M1		Standardising (2.95, 3 or 3.05) with 3.3 & $(\sqrt{0.16}, 0.16 \text{ or } 0.16^2)$ and/or $(3.3 - x)$
	P(Z > -1.875) = P(Z < 1.875) =	ml		Correct area change
	0.969 to 0.97(0)	A1	3	AWFW (0.96960)
(iii)	P(3.0 < X < 3.5) = (i) - [1 - (ii)] =	M1		OE
	0.863 to 0.865	A1	2	AWFW: CSO (0.86395)
(b)	$0.025 \Rightarrow z = 1.96$	B1		CAO; ignore sign
	$z = \frac{3.1 - \mu}{0.16}$	M1		Standardising 3.1 with μ and 0.16; allow (μ – 3.1)
	= -1.96	ml		Equating z-term to z-value; not using 0.025, 0.975, $ 1 - z $ or $\Phi(0.025) = 0.507$ to 0.512
	Hence $\mu = 3.4(0)$ to 3.42	A1	4	AWFW; CSO (3.4136)
	Total		12	

'SS1B (c	ont)			
Q	Solution	Marks	Total	Comments
2(a)	$r = \frac{416.3}{\sqrt{1280.55 \times 281.8}} =$	M1		Allow no $$
	0.69 to 0.7(0)	A1	2	AWFW (0.693) (0.00115)
(b)	(Quite or fairly) weak / some / moderate (quite or fairly) strong positive correlation (relationship / association) between	A1		 OE; must qualify strength and indicate positive A0 for poor / reasonable / average / medium / good A0 for very weak / very strong etc
	head & body length and tail length Ignore subsequent alternative comments only if A1 B1 already scored	B1	2	Context; accept 'body and tail' or even 'head and tail'
	OR			
	Some evidence that mice with large head & body lengths also have long tails	(A1) (B1)		OE; must qualify strength and indicate positive in context
(c)	0.69 to 0.7(0) OR Answer to (a)	B1√	1	0 < r < 1
(d)	Existence of: Non-linear relationship Outliers More than one relationship	B1		Any one; OE Not reasons identifiable from context (eg spurious)
	Sensible related sketch	B1	2	
	SC: Check on calculation \Rightarrow B1 B0			
	Total		7	

5

13ths

	oncj	1		10
Q	Solution	Marks	Total	Comments
3(a)	12 elephants are a random sample OR are selected independently	B1		OE; eg representative
	Mean $\overline{x} = \frac{39.24}{12} = 3.27$	B1		САО
	$98\% \implies z = 2.32$ to 2.33	B1		AWFW (2.3263)
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used; must have \sqrt{n} with $n > 1$
	Thus $3.27 \pm 2.3263 \times \frac{0.20}{\sqrt{12}}$	A1√		$$ on \overline{x} and z only
	Hence 3.27 ± 0.1343			
	Hence $3.27 \pm (0.13 \text{ to } 0.14)$ OR (3.13 to 3.14, 3.4(0) to 3.41)	A1	6	AWFW
(b)	Value of 2.90 is below / outside CI	B 1√		on (a); OE
	Suggests mean height of adult male Asian elephants is less than / different from that / mean height of adult male African elephants	B1√ dep	2	on (a); OE
	Total		8	

Q	Solution	Marks	Total	Comments
4(a)	≥ 8 points plotted accurately	B2	2	
	$(\geq 6 \text{ points plotted accurately})$	(B1)		
(b)	b (gradient) = 1.19 to 1.2(0)	B2		AWFW (1.19066)
	(b (gradient) = 1.1 to 1.3)	(B1)		
	a (intercept) = 3.8 to 4(.0)	B2	4	AWFW (3.94949)
	(a (intercept) = 2.2 to 5.4)	(B1)		
	Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$			160, 2758, 230 and 3915,75
	OR	(M1)		
	Attempt at S_{xx} and S_{xy}			198 and 235.75
	Attempt at correct formula for <i>b</i> (gradient) $h(x) = \frac{1}{2} \frac{1}{2}$	(m1)		
	b (gradient) = 1.19 to 1.2(0) a (intercept) = 3.8 to 4(.0)	(A1) (A1)		AWFW
	identified correctly later in question			
(c)	Line plotted accurately	B2	2	At least from $x \approx 7.5$ to 22.0
	(Evidence of correct method for ≥ 2	(M1)		$x = 10 \implies y = 15.5$ to 16.5
	points)			$x = 20 \implies y = 27.0$ to 28.5
(d)(i)	When $x = 15$:			
	y = 21.5 to 22(.0)	B2	2	AWFW (21.8)
	(y = 18.5 to 25(.0))	(B1)		AWFW
	If B0, then use of c's equation with $x = 15$	(M1)		
(ii)	Points are quite widely scattered about	B1		When $x = 14$ then $y = 14.5$
	line			When $x = 16$ then $y = 27.5$
	Hence not very reliable	B1 dep	2	B0 B0 for 'interpolation so reliable'
	Total	•	12	

MS/SS1B - AQA GCE Mark Scheme 2008 January Marins Cloud

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	P(G') = 1 - 0.70 = 0.3(0)	B1	1	CAO; OE
(ii)	$P(G \cap S') = 0.70 - (0.25 \text{ or } 0.55 \text{ or } 0.45)$ or $1 - 0.55$	M1		Can be implied only if answer is correct
	= 0.45	A1	2	CAO; OE
(iii)	$P(1 \text{ only}) = 0.70 + 0.55 - (2 \times 0.25)$ or 1 - 0.25 or 0.45 + 0.30	M1		Can be implied only if answer is correct; allow no $(\times 2)$ but not by implication from answer
	= 0.75	A1	2	CAO; OE
(b)	$P(G' \cap G' \cap G' \cap G') = [(a)(i)]^4$	M1		Can be implied by correct answer Ignore multiplier of 4
	= 0.0081	A1	2	CAO; OE
(c)	$\mathbf{P}(\mathbf{H}_G) = \mathbf{P}(\mathbf{A}_G \cap \mathbf{H}_G) + \mathbf{P}(\mathbf{A}_{G'} \cap \mathbf{H}_G) =$			
	(0.70×0.60) or 0.42	M1		Can be implied by correct answer
	(0.30×0.10) or 0.03	M1		Can be implied by correct answer
	= 0.42 + 0.03 = 0.45	A1	3	CAO; OE
(d)	$P(H_o) = 1 - [0.35 + (c)]$	M1		Can be implied by correct answer
	= 0.2(0)	A1	2	CAO; OE
	Total		12	

MS/SS1B	(cont)
---------	--------

				WWW. MY MY
			MS/SS1B -	AQA GCE Mark Scheme 2008 January
<u>5/SS1B (c</u> 0	ont) Solution	Marks	Total	Comments
<u>c</u> (a)(i)	x: 0 1 2 3 4 5 6 7 8 9 F: 30 109 208 276 336 360 371 377 379 380		1000	
	Median ($\approx 190.5^{\text{th}}$) = 2	B2		CAO; B0 if shown method incorrect
	Interquartile range ($\approx 285.75^{\text{th}} - \approx 95.25^{\text{th}}$)			
	= 4 - 1 = 3	В2	4	CAO; B0 if shown method incorrect B1 for identification of 4 and 1
	If neither is correct but F attempted	(M1)		Allow for median = $1 + \frac{x}{99}$
	and matched correctly with $\geq 5 x$ -values	(A1)		
(ii)	Mean $(\overline{x}) = 2.56$ to 2.57	B2		AWFW (2.56316)
	(2.5 to 2.6)	(B1)		AWFW $\sum fx = 974$ and $\sum fx^2 = 3546$
	Standard Deviation $(s_n, s_{n-1}) =$ 1.66 to 1.67 (1.6 to 1.7)	B2 (B1)	4	AWFW (1.66187) AWFW (1.66406)
	If neither is correct but $\sum fx$ attempted and result divided by 380	(M1) (M1)		
(b)(i)	Average: Same/similar/greater in 2004/05	B1 dep		OE; dep on 2 and 2.5 to 2.6
	Spread: Similar/greater in 2004/05	B1 dep	2	OE; dep on 3 and 1.6 to 1.7
(ii)	Rule applies to data that is (approximately) symmetric/normal/bell- shaped	B1		OE
	Data for 2005/06 is (positively) skewed/ not symmetric/not normal/not bell-shaped	B1	2	OE
	Total		12	

MS/SS1B (cont)

				mun
			MS/SS1B -	AQA GCE Mark Scheme 2008 January
5S1B (c	ont)			SCIOU
Q	Solution	Marks	Total	Comments
7(a)	Use of binomial in (a) or (b)	M1		Can be implied by answers
(i)	$P(X \ge x) = 1 - P(X \le x - 1)$ OR	M1		Identified from an answer / 1 – answer Can be implied from a correct answer
	$= 1 - B(\Sigma x, 50, 0.08)$			Identified from an answer/expression
	= 1 - 0.0827 = 0.915 to $0.92(0)$	A1		AWFW (0.9173)
(**)				≥ 1 correct \Rightarrow M1 M1
(11)	$P(X \ge 3) = 1 - 0.2260 = 0.77(0) \text{ to } 0.775$	A1	4	AWFW (0.7740)
(b)(i)	$P(Y=0) = (1 - 0.025)^{15} = 0.975^{15}$	M1		Can be implied from correct answer
	= 0.68(0) to 0.685	A1		AWFW (0.6840)
(ii)	$P(Y \ge 1) = 1 - (i)$	M1		Can be implied from answer if $\varepsilon(0, 1)$
	= 0.315 to $0.32(0)$	A1√	4	$ on (i) \text{ if } \epsilon (0, 1) $ (0.3160)
(c)	Probability =			
	$[(b)(ii) \times (a)(i)]$ or (0.316×0.917)	M1		Ignore additional terms
	$[(b)(i) \times (a)(ii)]$ or (0.684×0.774)	M1		
	= 0.2898 + 0.529	A1		2 terms added with \geq 1 correct
	= 0.81 to 0.83	A1	4	AWFW (0.8193)
	Total		12	
	TOTAL		75	